
Camera-based driver
monitoring system using
deep learning

WHITE PAPER
www.visteon.com

www.embedded-world.eu

Camera based driver monitoring system

using deep learning

Nirmal Kumar Sancheti

AllGo Embedded Systems

Bengaluru, India

nirmal@allgosystems.com

Krupa H Gopal

AllGo Embedded Systems

Bengaluru, India

krupahg@allgosystems.com

Manjari Srikant

AllGo Embedded Systems

Bengaluru, India

manjari@allgosystems.com

Abstract — Driver Monitoring is emerging as an essential

requirement for Advanced Driving Assistance and Autonomous

Driving systems. In this paper we propose a real-time, IR camera-

based driver monitoring system. Basic driver monitoring features

include head tracking, gaze tracking, eye state analysis – blink

rate, blink duration, eye open/close all of which can be used to

implement driver safety applications like driver distraction and

driver drowsiness detection. We propose a system where all these

modules have been developed using deep learning which has made

the solution more robust to different ethnicities, gender, lighting

conditions and occlusions. We have also optimized the solution to

run on any embedded platform (ARM, DSP, ASICs etc) without

the need of GPU or cloud support during runtime. This helps in

lowering power consumption and cost making the solution

amenable for use in automotive. An implementation of this system

is available as part of the See ‘n Sense DMS solution from AllGo.

Keywords—Deep learning, CNN, Driver Monitoring System,

Face detection, Gaze estimation, Head pose estimation, Eye state

analysis

I. INTRODUCTION

Camera based driver monitoring systems (DMS) can help in
detecting driver drowsiness and distraction, thus playing a
crucial role in ensuring driver safety. DMS solutions have
traditionally been developed using Computer Vision/Image
Processing approach. This approach needs fine tuning of
various parameters based on different conditions like lighting,
ethnicity etc. It is extremely difficult to tune such solutions
generically to fit all conditions. More recently, conventional
machine learning approaches have been used, where, the

researcher must decide what features in the data are important
and then let the machine learn based on those features. This
requires a lot of expertise in that area as well as a lot of research
in picking these features. As compared to these approaches, the
Deep Learning based approach takes a holistic view of the data
and derives features from the data on its own, removing the
dependency for hand-crafted features by humans. Deep
learning is a subset of machine learning and consists of neural
networks which have been inspired by the functioning of human
neural system. These networks are very versatile and generalize
very well in different conditions.

Convolution Neural Network (CNN) is a special type of
deep neural network usually applied to images. The functioning
of the network is based on the way our visual cortex functions.
Research shows that mammal brain cells consists of two
different types of cells. The simple cells which can detect
shapes within a restricted area of interest and complex cells
which have larger receptive field.

CNNs emulate this by using filters and depth of the network.
Since ours is a camera-based DMS solution, it involves
processing of the images received from camera and CNNs are
used for this purpose.

The basic building blocks for driver safety applications are
face detection, head pose estimation, gaze estimation, eye status
detection – blink rate, blink duration, open/close status. Deep
Learning, being computationally intensive, will typically
require a GPU / high end CPU to run real time. In this paper,
we present the implementation details of the basic blocks of a

Driver Monitoring System using Deep Learning that runs real
time on an embedded platform without the use of GPU / high
end CPU.

The organization of the paper is as follows. Section II
highlights the approach we have taken to implement the basic
blocks of DMS and Section III gives the details of data
collection. Section IV talks about how to optimize DMS on an
embedded platform and section V describes our commercial
offering See ‘n Sense.

II. OUR APPROACH

“Fig. 1”, describes the basic building blocks of our DMS,
the outputs of which can be used by an application to implement
driver safety solutions. We have implemented these building
blocks of DMS using CNNs which have provided better results
compared to conventional image processing/computer vision-
based implementation.

Fig. 1. Block diagram of DMS

A. Face Detection

 The first problem in any driver monitoring solution is

to detect the face of the driver. Object detection and

classification is a much-researched field in deep learning thanks

to the incredible success of Alex Net in 2012 on the ImageNet

Challenge. Object detection and classification consists of two

problems – one is localizing the object/s and the second is

classifying the object/s. We have treated face detection as an

object detection and classification problem. By training a deep

neural network with face annotated images, we were able to

build a face detector which is robust against various lighting

changes, ethnicities, occlusions and expressions.

B. Head pose estimation

 Head pose estimation gives the 3D angular orientation

of the head in the camera coordinate system. It is represented

by three angles – yaw, pitch and roll. Head pose estimation is a

challenging task because of large head pose variations and other

environmental factors such as lighting, occlusions and

expressions. We have developed a CNN based head tracking

system using a single camera which takes the detected face

region of the image as an input and gives out 3D angles of the

head as an output.

C. Gaze estimation

 Gaze estimation becomes very important when it

comes to detecting distracted driver. Our deep learning-based

network is a person-independent, non-intrusive gaze estimator.

The gaze estimation network has been trained to work on each

of the eye regions independently. The network also takes head

pose angles as an input to compute the gaze vectors for each of

the eyes. These two vectors can later be combined using simple

geometry to get the point of intersection of the two gaze vectors.

D. Eye state analysis

 Eye state analysis gives out information related to

blink (rate and duration) and eye status (open or close). These

parameters become very important in detecting a drowsy driver.

By running a non-intrusive calibration procedure for a few

seconds when the driver enters the car, blink rate and duration

are calibrated for each person. Appropriate deviation from this

is then used to signal warnings.

 Blink detection as well as eye open/close detection has

been implemented using a relatively smaller neural network.

Eye open/close is a binary classification problem. Blink

detection is a little bit more complex and involves the analysis

of the past few frames to detect a blink.

III. DATA COLLECTION AND TRAINING

 For our solution, training happens offline using GPUs and
CPUs. The training can take anywhere between a couple of
hours to a couple of days depending on the amount of data with
which it is being trained and the memory and speed of the
machine on which it is being run. It is an onerous task to obtain
the data and the ground truth required for training. The quality
of the solution is heavily dependent on the quality of the
training with which the model is generated.

 We have collected data from people of different ethnicities,
under different lighting conditions, with different expressions,
with various occlusions like sunglasses, scarves, glasses, caps
etc. Each module will require a specialized way of collecting
and annotating data.

 For face detection, data collection will involve capturing
faces under all poses, distances, illumination and the data
annotation is done manually by annotating the region where the
face is present with a bounding box.

 For head pose estimation, there is no easy way to collect
data and annotate the images offline. Hence, while collecting
data, head pose annotation must be done by auxiliary means.
There are multiple ways of annotating head pose while
collecting data – manually or by using external sensors which
can be magnetic based or optical based. Manual annotation is
prone to a lot of errors. Magnetic based approach has a
limitation that it is sensitive to the presence of metals. We have
picked an optical sensor-based ground-truthing mechanism for
head pose estimation.

 Gaze estimation annotation involves both manual as well as
automated methods. Since gaze estimation ground truth
requires head pose annotation as well, the procedure used to

www.embedded-world.eu

annotate head pose will be used together with annotating the
gaze direction of the person. A bunch of points are displayed on
a screen and the person whose data is being collected is asked
to look at each point with various head poses. The person's 3D
position of the eye as well as the 3D position of the point being
looked at will be measured to get the gaze vector for annotation.

 Blink detection and eye state detection annotations are done
offline by manually annotating the images. Collection of data
should involve all possible scenarios like slow blinks, fast
blinks, different blink rates, partial eye closures – at different
head poses and lighting conditions.

 Once the data and ground truths are ready, to increase the
amount of data and variation amongst them, a lot of data
augmentation is done before training (some of them being –
random cropping, flipping images etc).

IV. DEEP LEARNING ON EMBEDDED PLATFORM

Any deep learning solution is computationally intensive
which calls for using GPUs or high-end CPUs. We optimize our
models heavily to make it run on low cost embedded platform.
Below are some of the measures taken to optimize performance
for embedded targets.

A. Picking the right network/model
 The deep learning model should be picked based on

the platform that will be used for inference, the data available
for training and the final accuracy desired. If the inference is
run in a PC environment with high end CPUs/GPUs, the
complexity of the model will not be a concern. Whereas, in an
embedded platform, the complexity of the model gains
importance. The model which has the least complexity and yet
gives desired levels of accuracy should be picked.

For example, in an object detection problem, Inception
network or Resnet-50 network will work very well but are
computationally intensive and won't be feasible to run on an
embedded platform at real-time. A network like SSD or YOLO
is a much better choice in terms of complexity. The accuracy
might be lower than that of the bigger networks, but compared
to traditional computer vision techniques, these win by a large
margin.

 We have selected the network models carefully and further
optimized using pruning and quantization as discussed below.

B. Optimizing the model
Once a model is picked, it needs to be trained with the

training data. The trained model can then be optimized by post
training techniques like quantization of weights. The quantized
model will likely give a lower performance than the full
precision version. Retraining the network with the quantized
weights derived from the full precision version as the starting
point will improve the accuracy.

Another optimization can be careful pruning of the network
to reduce the number of weights and reduce the complexity of
the network. Another way to lower the complexity of the model
is to use newer and better techniques of deep learning like
replacing convolution layer with a depth-wise convolution
layer.

When running the inference of a model on an embedded
platform, the bottleneck is usually the loading of weights in the
RAM. Grouping of data which utilize the same weights of the
model and processing them batch-wise will result in fewer
cache misses.

C. Optimization for embedded platform
Picking the right deep learning tool is very critical for

development as well as deployment. ARM offers ARM
Compute library (ACL) which is a collection of low-level
software functions optimized for ARM Cortex CPU and ARM
Mali GPU architectures, targeted at a variety of use-cases
including: image processing, computer vision and machine
learning.

For our solution, we chose TensorFlow because of its
advantages when it comes to training and deployment.
TensorFlow has support for distributed computing and good
graph visualization tools which becomes critical especially
during training. It has faster compilation time than most of the
other libraries and provides both C++ and python APIs. It also
comes with an optimized, light weight inference library (Tflite)
which is best suited for embedded platforms.

 In order to make most of the parallelism offered by

multi core processors, we can run inference of different

modules in different threads. This needs to be done tactically as

some of the modules are dependent on the previous modules’

output.

V. SEE ‘N SENSE

 Our current driver safety modules described here are

available commercially as part of our See ‘n Sense offerings.

See ‘n Sense also includes Cabin monitoring modules which are

under development. These modules include Face Recognition,

Emotion Detection Child detection and Activity detection

(Eating, Smoking, Using phone etc.). See ‘n Sense is currently

available on ARM/iMX platform. We have plans to make it

available on DSPs and other special architectures.

VI. CONCLUSION

We have proposed a driver monitoring solution based on
deep learning that can be run locally on any embedded platform.
In our experience this gives better quality of results compared
to conventional approaches.

We expect a huge increase in deployment of Deep Learning
based Artificial Intelligence solutions in the coming years and
every field would be influenced by it.

REFERENCES

[1] Ian Goodfellow; Yoshua Bengio; Aaron Courville. Deep Learning

[2] Jonathan Huang; Vivek Rathod; Chen Sun. Speed/accuracy trade-offs for
modern convolutional object detectors

[3] Francisco Vicente; Zehua Huang; Xuehan Xiong; Fernando De la Torre;
Wende Zhang; Dan Levi. Driver Gaze Tracking and Eyes Off the Road
Detection System

[4] Rajeev Rajan;Vishal M. Patel;Rama Chellappa. HyperFace: A Deep
Multi-task Learning Framework for Face Detection, Landmark
Localization, Pose Estimation, and Gender Recognition

[5] Sachin Sudhakar Farfade; Mohammad Saberian; Li-Jia Li. Multi-view
Face Detection Using Deep Convolutional Neural Networks

[6] Alberto Fernández; Rubén Usamentiaga; Juan Luis Carús; Rubén Casado.
Driver Distraction Using Visual-Based Sensors and Algorithms

[7] Javier Jim ́enez-Pinto; Miguel Torres-Torriti. Optical Flow and Driver’s
Kinematics Analysis for State of Alert Sensing

	_white paper titles.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

