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Abstract — Driver Monitoring is emerging as an essential 

requirement for Advanced Driving Assistance and Autonomous 

Driving systems. In this paper we propose a real-time, IR camera-

based driver monitoring system. Basic driver monitoring features 

include head tracking, gaze tracking, eye state analysis – blink 

rate, blink duration, eye open/close all of which can be used to 

implement driver safety applications like driver distraction and 

driver drowsiness detection. We propose a system where all these 

modules have been developed using deep learning which has made 

the solution more robust to different ethnicities, gender, lighting 

conditions and occlusions. We have also optimized the solution to 

run on any embedded platform (ARM, DSP, ASICs etc) without 

the need of GPU or cloud support during runtime. This helps in 

lowering power consumption and cost making the solution 

amenable for use in automotive. An implementation of this system 

is available as part of the See ‘n Sense DMS solution from AllGo. 

Keywords—Deep learning, CNN, Driver Monitoring System, 

Face detection, Gaze estimation, Head pose estimation, Eye state 

analysis 

I.  INTRODUCTION  

Camera based driver monitoring systems (DMS) can help in 
detecting driver drowsiness and distraction, thus playing a 
crucial role in ensuring driver safety.  DMS solutions have 
traditionally been developed using Computer Vision/Image 
Processing approach. This approach needs fine tuning of 
various parameters based on different conditions like lighting, 
ethnicity etc. It is extremely difficult to tune such solutions 
generically to fit all conditions. More recently, conventional 
machine learning approaches have been used, where, the 

researcher must decide what features in the data are important 
and then let the machine learn based on those features. This 
requires a lot of expertise in that area as well as a lot of research 
in picking these features. As compared to these approaches, the 
Deep Learning based approach takes a holistic view of the data 
and derives features from the data on its own, removing the 
dependency for hand-crafted features by humans. Deep 
learning is a subset of machine learning and consists of neural 
networks which have been inspired by the functioning of human 
neural system. These networks are very versatile and generalize 
very well in different conditions.  

Convolution Neural Network (CNN) is a special type of 
deep neural network usually applied to images. The functioning 
of the network is based on the way our visual cortex functions. 
Research shows that mammal brain cells consists of two 
different types of cells. The simple cells which can detect 
shapes within a restricted area of interest and complex cells 
which have larger receptive field. 

CNNs emulate this by using filters and depth of the network. 
Since ours is a camera-based DMS solution, it involves 
processing of the images received from camera and CNNs are 
used for this purpose.  

The basic building blocks for driver safety applications are 
face detection, head pose estimation, gaze estimation, eye status 
detection – blink rate, blink duration, open/close status. Deep 
Learning, being computationally intensive, will typically 
require a GPU / high end CPU to run real time. In this paper, 
we present the implementation details of the basic blocks of a 



Driver Monitoring System using Deep Learning that runs real 
time on an embedded platform without the use of GPU / high 
end CPU. 

The organization of the paper is as follows. Section II 
highlights the approach we have taken to implement the basic 
blocks of DMS and Section III gives the details of data 
collection. Section IV talks about how to optimize DMS on an 
embedded platform and section V describes our commercial 
offering See ‘n Sense.  

II. OUR APPROACH 

“Fig. 1”, describes the basic building blocks of our DMS, 
the outputs of which can be used by an application to implement 
driver safety solutions. We have implemented these building 
blocks of DMS using CNNs which have provided better results 
compared to conventional image processing/computer vision-
based implementation. 

 

Fig. 1. Block diagram of DMS 

A. Face Detection  

 The first problem in any driver monitoring solution is 

to detect the face of the driver. Object detection and 

classification is a much-researched field in deep learning thanks 

to the incredible success of Alex Net in 2012 on the ImageNet 

Challenge. Object detection and classification consists of two 

problems – one is localizing the object/s and the second is 

classifying the object/s. We have treated face detection as an 

object detection and classification problem. By training a deep 

neural network with face annotated images, we were able to 

build a face detector which is robust against various lighting 

changes, ethnicities, occlusions and expressions. 

 

B. Head pose estimation  

 Head pose estimation gives the 3D angular orientation 

of the head in the camera coordinate system. It is represented 

by three angles – yaw, pitch and roll. Head pose estimation is a 

challenging task because of large head pose variations and other 

environmental factors such as lighting, occlusions and 

expressions. We have developed a CNN based head tracking 

system using a single camera which takes the detected face 

region of the image as an input and gives out 3D angles of the 

head as an output. 

   

C. Gaze estimation  

 Gaze estimation becomes very important when it 

comes to detecting distracted driver. Our deep learning-based 

network is a person-independent, non-intrusive gaze estimator.   

The gaze estimation network has been trained to work on each 

of the eye regions independently. The network also takes head 

pose angles as an input to compute the gaze vectors for each of 

the eyes.  These two vectors can later be combined using simple 

geometry to get the point of intersection of the two gaze vectors. 

 

D. Eye state analysis 

 Eye state analysis gives out information related to 

blink (rate and duration) and eye status (open or close). These 

parameters become very important in detecting a drowsy driver. 

By running a non-intrusive calibration procedure for a few 

seconds when the driver enters the car, blink rate and duration 

are calibrated for each person. Appropriate deviation from this 

is then used to signal warnings.  

 Blink detection as well as eye open/close detection has 

been implemented using a relatively smaller neural network. 

Eye open/close is a binary classification problem. Blink 

detection is a little bit more complex and involves the analysis 

of the past few frames to detect a blink. 

 

III. DATA COLLECTION AND TRAINING 

 For our solution, training happens offline using GPUs and 
CPUs. The training can take anywhere between a couple of 
hours to a couple of days depending on the amount of data with 
which it is being trained and the memory and speed of the 
machine on which it is being run. It is an onerous task to obtain 
the data and the ground truth required for training. The quality 
of the solution is heavily dependent on the quality of the 
training with which the model is generated.  

 We have collected data from people of different ethnicities, 
under different lighting conditions, with different expressions, 
with various occlusions like sunglasses, scarves, glasses, caps 
etc. Each module will require a specialized way of collecting 
and annotating data.  

 For face detection, data collection will involve capturing 
faces under all poses, distances, illumination and the data 
annotation is done manually by annotating the region where the 
face is present with a bounding box. 

 For head pose estimation, there is no easy way to collect 
data and annotate the images offline. Hence, while collecting 
data, head pose annotation must be done by auxiliary means. 
There are multiple ways of annotating head pose while 
collecting data – manually or by using external sensors which 
can be magnetic based or optical based. Manual annotation is 
prone to a lot of errors. Magnetic based approach has a 
limitation that it is sensitive to the presence of metals. We have 
picked an optical sensor-based ground-truthing mechanism for 
head pose estimation.  

 Gaze estimation annotation involves both manual as well as 
automated methods. Since gaze estimation ground truth 
requires head pose annotation as well, the procedure used to 
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annotate head pose will be used together with annotating the 
gaze direction of the person. A bunch of points are displayed on 
a screen and the person whose data is being collected is asked 
to look at each point with various head poses. The person's 3D 
position of the eye as well as the 3D position of the point being 
looked at will be measured to get the gaze vector for annotation.  

 Blink detection and eye state detection annotations are done 
offline by manually annotating the images. Collection of data 
should involve all possible scenarios like slow blinks, fast 
blinks, different blink rates, partial eye closures – at different 
head poses and lighting conditions. 

 Once the data and ground truths are ready, to increase the 
amount of data and variation amongst them, a lot of data 
augmentation is done before training (some of them being – 
random cropping, flipping images etc). 

 

IV. DEEP LEARNING ON EMBEDDED PLATFORM 

Any deep learning solution is computationally intensive 
which calls for using GPUs or high-end CPUs. We optimize our 
models heavily to make it run on low cost embedded platform. 
Below are some of the measures taken to optimize performance 
for embedded targets. 

A. Picking the right network/model 
  The deep learning model should be picked based on 

the platform that will be used for inference, the data available 
for training and the final accuracy desired. If the inference is 
run in a PC environment with high end CPUs/GPUs, the 
complexity of the model will not be a concern. Whereas, in an 
embedded platform, the complexity of the model gains 
importance. The model which has the least complexity and yet 
gives desired levels of accuracy should be picked.  

For example, in an object detection problem, Inception 
network or Resnet-50 network will work very well but are 
computationally intensive and won't be feasible to run on an 
embedded platform at real-time. A network like SSD or YOLO 
is a much better choice in terms of complexity. The accuracy 
might be lower than that of the bigger networks, but compared 
to traditional computer vision techniques, these win by a large 
margin. 

 We have selected the network models carefully and further 
optimized using pruning and quantization as discussed below.  

B. Optimizing the model 
Once a model is picked, it needs to be trained with the 

training data. The trained model can then be optimized by post 
training techniques like quantization of weights. The quantized 
model will likely give a lower performance than the full 
precision version. Retraining the network with the quantized 
weights derived from the full precision version as the starting 
point will improve the accuracy. 

Another optimization can be careful pruning of the network 
to reduce the number of weights and reduce the complexity of 
the network. Another way to lower the complexity of the model 
is to use newer and better techniques of deep learning like 
replacing convolution layer with a depth-wise convolution 
layer.  

When running the inference of a model on an embedded 
platform, the bottleneck is usually the loading of weights in the 
RAM. Grouping of data which utilize the same weights of the 
model and processing them batch-wise will result in fewer 
cache misses. 

C. Optimization for embedded platform 
Picking the right deep learning tool is very critical for 

development as well as deployment.  ARM offers ARM 
Compute library (ACL) which is a collection of low-level 
software functions optimized for ARM Cortex CPU and ARM 
Mali GPU architectures, targeted at a variety of use-cases 
including: image processing, computer vision and machine 
learning.  

For our solution, we chose TensorFlow because of its 
advantages when it comes to training and deployment. 
TensorFlow has support for distributed computing and good 
graph visualization tools which becomes critical especially 
during training. It has faster compilation time than most of the 
other libraries and provides both C++ and python APIs. It also 
comes with an optimized, light weight inference library (Tflite) 
which is best suited for embedded platforms. 

 In order to make most of the parallelism offered by 

multi core processors, we can run inference of different 

modules in different threads. This needs to be done tactically as 

some of the modules are dependent on the previous modules’ 

output. 

V. SEE ‘N SENSE 

      Our current driver safety modules described here are 

available commercially as part of our See ‘n Sense offerings. 

See ‘n Sense also includes Cabin monitoring modules which are 

under development. These modules include Face Recognition, 

Emotion Detection Child detection and Activity detection 

(Eating, Smoking, Using phone etc.). See ‘n Sense is currently 

available on ARM/iMX platform. We have plans to make it 

available on DSPs and other special architectures. 

VI. CONCLUSION 

We have proposed a driver monitoring solution based on 
deep learning that can be run locally on any embedded platform. 
In our experience this gives better quality of results compared 
to conventional approaches. 

We expect a huge increase in deployment of Deep Learning 
based Artificial Intelligence solutions in the coming years and 
every field would be influenced by it.  
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